Reference: Zhao XJ, et al. (1996) Function and expression of flavohemoglobin in Saccharomyces cerevisiae. Evidence for a role in the oxidative stress response. J Biol Chem 271(41):25131-8

Reference Help

Abstract


We have studied the function and expression of the flavohemoglobin (YHb) in the yeast Saccharomyces cerevisiae. This protein is a member of a family of flavohemoproteins, which contain both heme and flavin binding domains and which are capable of transferring electrons from NADPH to heme iron. Normally, actively respiring yeast cells have very low levels of the flavohemoglobin. However, its intracellular levels are greatly increased in cells in which the mitochondrial electron transport chain has been compromised by either mutation or inhibitors of respiration. The expression of the flavohemoglobin gene, YHB1, of S. cerevisiae is sensitive to oxygen. Expression is optimal in hyperoxic conditions or in air and is reduced under hypoxic and anaerobic conditions. The expression of YHB1 in aerobic cells is enhanced in the presence of antimycin A, in thiol oxidants, or in strains that lack superoxide dismutase. All three conditions lead to the accumulation of reactive oxygen species and promote oxidative stress. To study the function of flavohemoglobin in vivo, we created a null mutation in the chromosomal copy of YHB1. The deletion of the flavohemoglobin gene in these cells does not affect growth in either rhoo or rho+ genetic backgrounds. In addition, a rho+ strain carrying a yhb1(-) deletion has normal levels of both cyanide-sensitive and cyanide-insensitive respiration, indicating that the flavohemoglobin does not function as a terminal oxidase and is not required for the function or expression of the alternative oxidase system in S. cerevisiae. Cells that carry a yhb1(-)deletion are sensitive to conditions that promote oxidative stress. This finding is consistent with the observation that conditions that promote oxidative stress also enhance expression of YHB1. Together, these findings suggest that YHb plays a role in the oxidative stress response in yeast.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S. | Comparative Study
Authors
Zhao XJ, Raitt D, V Burke P, Clewell AS, Kwast KE, Poyton RO
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference