Reference: Sanchirico M, et al. (1995) Relocation of the unusual VAR1 gene from the mitochondrion to the nucleus. Biochem Cell Biol 73(11-12):987-95

Reference Help

Abstract


The Var1 protein (Var1p) is an essential, stoichiometric component of the yeast mitochondrial small ribosomal subunit, and it is the only major protein product of the mitochondrial genetic system that is not part of an energy transducing complex of the inner membrane. Interestingly, no mutations have been reported that affect the function of Var1p, presumably because loss of a functional mitochondrial translation system leads to an instability of mtDNA. To study the structure, function and synthesis of Var1p, we have engineered yeast strains for the expression of this protein from a nuclear gene, VAR1U, in which 39 nonstandard mitochondrial codons were converted to the universal code. Immunoblot analysis using an epitope-tagged form of Var1Up showed that the nuclear-encoded protein was expressed and imported into the mitochondria. VAR1U was tested for its ability to complement a mutation in mtDNA, PZ206, which disrupts '3-end processing of the VARI mRNA, causing greatly reduced synthesis of Var1p and a respiratory-deficient phenotype. Respiratory growth was restored in PZ206 mutants by transformation with a centromere plasmid carrying VAR1U under ADH1 promoter control, thus proving that VAR1 function can be relocated from the mitochondrion to the nucleus. Moreover, epitope-tagged Var1Up co-sedimented specifically with small ribosomal subunits in high salt sucrose gradients. The relocation of VAR1 from the mitochondrion to the nucleus provides an excellent system for the molecular genetic analysis of structure-function relationships in the unusual Var1 protein.

Reference Type
Journal Article | Review | Review, Tutorial
Authors
Sanchirico M, Tzellas A, Fox TD, Conrad-Webb H, Periman PS, Mason TL
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference