Reference: Kamada Y, et al. (1995) The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response. Genes Dev 9(13):1559-71

Reference Help

Abstract


The PKC1 gene of budding yeast encodes a homolog of the alpha, beta, and gamma isoforms of mammalian PKC that is proposed to regulate a MAPK-activation pathway. Mutants in this pathway undergo cell lysis resulting from a deficiency in cell wall construction when they attempt to grow at elevated temperatures. We show that the PKC1-regulated pathway is important for induced thermotolerance and that the MPK1 protein kinase (the MAPK of this pathway) is strongly activated by mild heat shock. This activation is sustained during growth at high temperature and is dependent on the function of pathway components proposed to function upstream of MPK1, including PKC1. Expression of genes under the control of known heat shock-inducible promoter elements (HSEs and STREs) was not compromised in PKC1 pathway mutants, indicating that this pathway mediates a novel aspect of the yeast heat shock response. We propose that the heat-induced signal for pathway activation is generated in response to weakness in the cell wall created during growth under thermal stress, perhaps as a result of increased membrane fluidity. Evidence is presented that the mechanism by which the cell detects this weakness is by measuring stretch of the plasma membrane.

Reference Type
Journal Article
Authors
Kamada Y, Jung US, Piotrowski J, Levin DE
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference