Take our Survey

Reference: Sommer T and Wolf DH (1997) Endoplasmic reticulum degradation: reverse protein flow of no return. FASEB J 11(14):1227-33

Reference Help

Abstract


The endoplasmic reticulum (ER) is the site of entry of proteins into the secretory pathway. It is responsible for proper folding of the proteins before delivery to their site of action. Furthermore, proofreading to detect malfolded or unnecessary proteins that have to be eliminated and regulation of protein levels are crucial ER functions. The ubiquitin-proteasome system, located in the cytoplasm, has emerged as the major ER degradation machinery. A multitude of ER resident as well as membrane-bound and soluble proteolytic substrates of the secretory pathway are retained in the ER and destined for degradation via this pathway. Their actual proteolysis is preceded by a retrograde transport to the cytoplasm. A key component of the translocation apparatus, Sec61p, is also the central subunit of the retrograde transport system. Other components of the translocon such as Sec63p or the lumenal chaperone BiP may also be involved in export to the cytosol. Novel ER membrane proteins such as Der1p, Der3p/Hrd1p, or Hrd3p might reprogram the translocon for retrograde transport. As ubiquitination is a prerequisite for degradation by the proteasome, exported proteins are ubiquitinated. Representatives of ER membrane-bound ubiquitin-conjugating enzymes, Ubc6p and Cue1p/Ubc7p, have been identified in yeast. Retrograde transport and ubiquitination seem to be coupled processes.

Reference Type
Journal Article | Review | Review, Tutorial
Authors
Sommer T, Wolf DH
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference