Reference: Xu HX, et al. (1990) Coding and noncoding sequences at the 3' end of yeast histone H2B mRNA confer cell cycle regulation. Mol Cell Biol 10(6):2687-94

Reference Help

Abstract

Yeast (Saccharomyces cerevisiae) histone mRNA synthesis is tightly regulated to the S phase of the cell division cycle as a result of both transcriptional and posttranscriptional regulation. We focused on the role of posttranscriptional control in histone H2B1 gene (HTB1) regulation and studied a portion of the HTB1 message required for cell-cycle-specific accumulation. The 3' end of the HTB1 gene containing a 17-amino-acid coding sequence and entire noncoding sequence was fused to the bacterial neomycin phosphotransferase II gene (neo) under control of the GAL1 promoter. The expression of the endogenous and chimeric HTB1 genes was analyzed during the yeast cell cycle. As yeast cells entered a synchronous cell cycle following release from alpha-factor arrest, the level of GAL1-promoter-controlled neo-HTB1 message increased approximately 12-fold during S phase and dropped to basal level when the cells left S phase. This indicates that the 3' end of the HTB1 mRNA is capable of conferring cycle-specific regulation on a heterologous message. Deletion analysis of the 3' end showed that the signal for cell cycle control of HTB1 mRNA includes contiguous coding and noncoding sequences surrounding the stop codon. This differs from the situation in mammalian cells, whose posttranscriptional regulation of histone genes is mediated through a short sequence containing a stem-loop structure near the very terminus of the untranslated 3' end.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Xu HX, Johnson L, Grunstein M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference