Reference: Ohkuni K and Yamashita I (2000) A transcriptional autoregulatory loop for KIN28-CCL1 and SRB10-SRB11, each encoding RNA polymerase II CTD kinase-cyclin pair, stimulates the meiotic development of S. cerevisiae. Yeast 16(9):829-46

Reference Help

Abstract


Alkalization of the medium is associated with and required for the cellular development to meiosis and sporulation in the yeast Saccharomyces cerevisiae. To elucidate the molecular mechanisms for the significance of external alkalization, we isolated mutants defective in division arrest at G1 phase under an alkaline condition. The mutants obtained had recessive alleles of SRB10 encoding the cyclin (SRB11)-dependent protein kinase that phosphorylates the CTD domain of the largest subunit of RNA polymerase II and negatively regulates the transcriptional initiation of certain genes. A delta srb11 deletion mutant showed the same cell cycle defect. When shifted to alkali, wild-type cells decreased transcript levels of G1-cyclin genes (CLN1 to CLN3) and KIN28-CCL1 (encoding another CTD kinase-cyclin pair which, in contrast, stimulates the promoter clearance and transcriptional elongation in most genes), resulting in the accumulation of G1 cells and the hypophosphorylated form of RNA polymerase II and in an increase in cell size. However, under the same conditions, a delta srb10 mutant was defective in these events, except the downregulation of CLN1 and CLN2. The delta srb10 mutation also influenced on the transcript levels of meiosis-inducing genes called IME1 and IME2: the mutation elevated the transcript level of IME1 but reduced that of IME2, resulting in partial defects in premeiotic DNA synthesis and meiosis. Overexpression of KIN28 and CCL1 in wild-type cells impaired the alkali-induced G1 arrest and the rate of meiosis and elevated the transcript levels of SRB11 and IME1. These results indicate that a transcriptional autoregulatory loop for KIN28-CCL1 and SRB10-SRB11 is important for G1 arrest and meiosis. We also found that environmental conditions for meiosis finely regulate the transcript levels of KIN28 and CCL1, such that nitrogen starvation first elevates them but subsequent alkalization of medium decreases them.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Ohkuni K, Yamashita I
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference