Take our Survey

Reference: Oyedotun KS and Lemire BD (1997) The carboxyl terminus of the Saccharomyces cerevisiae succinate dehydrogenase membrane subunit, SDH4p, is necessary for ubiquinone reduction and enzyme stability. J Biol Chem 272(50):31382-8

Reference Help

Abstract


The succinate dehydrogenase (SDH) of Saccharomyces cerevisiae is composed of four nonidentical subunits encoded by the nuclear genes SDH1, SDH2, SDH3, and SDH4. The hydrophilic subunits, SDH1p and SDH2p, comprise the catalytic domain involved in succinate oxidation. They are anchored to the inner mitochondrial membrane by two small, hydrophobic subunits, SDH3p and SDH4p, which are required for electron transfer and ubiquinone reduction. Comparison of the deduced primary sequence of the yeast SDH4p subunit to SDH4p subunits from other species reveals the presence of an unusual 25-30 amino acid carboxyl-terminal extension following the last predicted transmembrane domain. The extension is predicted to be on the cytoplasmic side of the inner mitochondrial membrane. To investigate the extension's function, three truncations were created and characterized. The results reveal that the carboxyl-terminal extension is necessary for respiration and growth on nonfermentable carbon sources, for ubiquinone reduction, and for enzyme stability. Combined with inhibitor studies using a ubiquinone analog, our results suggest that the extension and more specifically, residues 128-135 are involved in the formation of a ubiquinone binding site. Our findings support a two-ubiquinone binding site model for the S. cerevisiae SDH.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Oyedotun KS, Lemire BD
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference