Reference: Hoja U, et al. (1998) Pleiotropic phenotype of acetyl-CoA-carboxylase-defective yeast cells--viability of a BPL1-amber mutation depending on its readthrough by normal tRNA(Gln)(CAG). Eur J Biochem 254(3):520-6

Reference Help

Abstract


The Saccharomyces cerevisiae gene BPL1 encodes the enzyme biotin:protein ligase (BPL), which is required for acetyl-CoA carboxylase (ACC) holoenzyme formation. Disruption of one of the two BPL1 alleles present in diploid cells results, upon sporulation, in a 2+:2(0) segregation of cell viability, with none of the two viable spores being BPL1 negative. In contrast to BPL1 deletants, BPL1 base-substitution mutants are potentially viable and may be isolated as long-chain-fatty-acid-requiring auxotrophs. In addition to ACC pyruvate carboxylase and an additional biotin-containing protein of unknown function fail to be biotinylated in BPL1-defective yeast mutants. In this study, one of these mutants, bpl1-C25/17, is shown to contain an amber stop codon at position 151 of the 689-amino-acid BPL sequence. In bpl1-C25/17 cells, de novo fatty acid synthesis is almost absent (< 2% of the wild type), while very-long-chain fatty acid (VLCFA) synthesis and, to some extent, medium-long-chain fatty acid elongation are still active. Hence, endogenous malonyl-CoA synthesis is reduced but not abolished by the translational stop mutation. A low rate of intact-BPL synthesis is accomplished in the mutant by occasional readthrough of the bpl1-C25/17 UAG nonsense triplet by normal yeast tRNA(Gln)(CAG). Correspondingly, ACC biotinylation is severely reduced though not completely absent in the two bpl1 mutants studied in this work. Residual BPL1 expression in bpl1-C25/17 cells is increased to a level allowing wild-type-like growth by transformation with high copy numbers of either the wild-type tRNA(Gln)(CAG) or the mutant bpl1-C25/17 genes. It is concluded that the lethality of BPL1 deletants is due to the lack of malonyl-CoA-dependent VLCFA synthesis and that the viability of distinct ACC-defective point mutants is due to their maintenance of a critical level of malonyl-CoA and, hence, VLCFA production. The residual capacity of malonyl-CoA synthesis, though, is inadequate to allow cytoplasmic bulk de novo fatty acid synthesis, nor does it support mutant growth on 13:0 as the only dietary fatty acid. ACC-defective mutants are respiratory deficient, which is attributed to the failure of mitochondrial fatty acid synthesis. Since lipoic acid levels of ACC1 and BPL1 mutants are essentially normal, an unknown product of mitochondrial fatty acid synthesis appears to be critically reduced in malonyl-CoA-deficient yeast cells.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Hoja U, Wellein C, Greiner E, Schweizer E
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference