Reference: Shahinian S, et al. (1998) Involvement of protein N-glycosyl chain glucosylation and processing in the biosynthesis of cell wall beta-1,6-glucan of Saccharomyces cerevisiae. Genetics 149(2):843-56

Reference Help

Abstract

beta-1,6-Glucan plays a key structural role in the yeast cell wall. Of the genes involved in its biosynthesis, the activity of Cwh41p is known, i.e., the glucosidase I enzyme of protein N-chain glucose processing. We therefore examined the effects of N-chain glucosylation and processing mutants on beta-1,6-glucan biosynthesis and show that incomplete N-chain glucose processing results in a loss of beta-1,6-glucan, demonstrating a relationship between N-chain glucosylation/processing and beta-1,6-glucan biosynthesis. To explore the involvement of other N-chain-dependent events with beta-1,6-glucan synthesis, we investigated the Saccharomyces cerevisiae KRE5 and CNE1 genes, which encode homologs of the "quality control" components UDP-Glc:glycoprotein glucosyltransferase and calnexin, respectively. We show that the essential activity of Kre5p is separate from its possible role as a UDP-Glc:glycoprotein glucosyltransferase. We also observe a approximately 30% decrease in beta-1,6-glucan upon disruption of the CNE1 gene, a phenotype that is additive with other beta-1,6-glucan synthetic mutants. Analysis of the cell wall anchorage of the mannoprotein alpha-agglutinin suggests the existence of two beta-1,6-glucan biosynthetic pathways, one N-chain dependent, the other involving protein glycosylphosphatidylinositol modification.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Shahinian S, Dijkgraaf GJ, Sdicu AM, Thomas DY, Jakob CA, Aebi M, Bussey H
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference