Reference: Wiltshire S, et al. (1997) An Abf1p C-terminal region lacking transcriptional activation potential stimulates a yeast origin of replication. Nucleic Acids Res 25(21):4250-6

Reference Help

Abstract


Although it has been demonstrated that eukaryotic cellular origins of DNA replication may harbor stimulatory elements that bind transcription factors, how these factors stimulate origin function is unknown. In Saccharomyces cerevisiae , the transcription factor Abf1p stimulates origin function of ARS121 and ARS1 . In the results presented here, an analysis of Abf1p function has been carried out utilizing LexA(BD)-Abf1p fusion proteins and an ARS 121 derivative harboring LexA DNA-binding sites. A minimal region which stimulates origin function mapped to 50 amino acids within the C-terminus of Abf1p. When tested for transcriptional activation of a LacZ reporter gene, the same LexA(BD)-Abf1p fusion protein had negligible transcriptional activation potential. Therefore, stimulation of ARS 121 may occur independently of a transcriptional activation domain. It has been previously observed that the Gal4p, Rap1p DNA-binding sites and the LexA-Gal4p fusion protein can replace the role of Abf1p in stimulating ARS 1 . Here we show that the stimulatory function of Abf1p at ARS 121 cannot be replaced by these alternative DNA-binding sites and the potent chimeric transcriptional activator LexA(BD)-Gal4(AD)p . Hence, these results strongly suggest that the Abf1p stimulation of replication may differ for ARS 121 and ARS 1 , and imply specificity in the Abf1p/ARS 121 relationship.

Reference Type
Authors
Wiltshire S, Raychaudhuri S, Eisenberg S
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference