Take our Survey

Reference: Parra KJ, et al. (2000) The H subunit (Vma13p) of the yeast V-ATPase inhibits the ATPase activity of cytosolic V1 complexes. J Biol Chem 275(28):21761-7

Reference Help

Abstract

V-ATPases are composed of a peripheral complex containing the ATP-binding sites, the V(1) sector, attached to a membrane complex containing the proton pore, the V(o) sector. In vivo, free, inactive V(1) and V(o) sectors exist in dynamic equilibrium with fully assembled, active V(1) V(o) complexes, and this equilibrium can be perturbed by changes in carbon source. Free V(1) complexes were isolated from the cytosol of wild-type yeast cells and mutant strains lacking V(o) subunit c (Vma3p) or V(1) subunit H (Vma13p). V(1) complexes from wild-type or vma3Delta mutant cells were very similar, and contained all previously identified yeast V(1) subunits except subunit C (Vma5p). These V(1) complexes hydrolyzed CaATP but not MgATP, and CaATP hydrolysis rapidly decelerated with time. V(1) complexes from vma13Delta cells contained all V(1) subunits except C and H, and had markedly different catalytic properties. The initial rate of CaATP hydrolysis was maintained for much longer. The complexes also hydrolyzed MgATP, but showed a rapid deceleration in hydrolysis. These results indicate that the H subunit plays an important role in silencing unproductive ATP hydrolysis by cytosolic V(1) complexes, but suggest that other mechanisms, such as product inhibition, may also play a role in silencing in vivo.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Parra KJ, Keenan KL, Kane PM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference