Take our Survey

Reference: Clairmont CA and Sweasy JB (1998) The Pol beta-14 dominant negative rat DNA polymerase beta mutator mutant commits errors during the gap-filling step of base excision repair in Saccharomyces cerevisiae. J Bacteriol 180(9):2292-7

Reference Help

Abstract


We demonstrated recently that dominant negative mutants of rat DNA polymerase beta (Pol beta) interfere with repair of alkylation damage in Saccharomyces cerevisiae. To identify the alkylation repair pathway that is disrupted by the Pol beta dominant negative mutants, we studied the epistatic relationship of the dominant negative Pol beta mutants to genes known to be involved in repair of DNA alkylation damage in S. cerevisiae. We demonstrate that the rat Pol beta mutants interfere with the base excision repair pathway in S. cerevisiae. In addition, expression of one of the Pol beta dominant negative mutants, Pol beta-14, increases the spontaneous mutation rate of S. cerevisiae whereas expression of another Pol beta dominant negative mutant, Pol beta-TR, does not. Expression of the Pol beta-14 mutant in cells lacking APN1 activity does not result in an increase in the spontaneous mutation rate. These results suggest that gaps are required for mutagenesis to occur in the presence of Pol beta-14 but that it is not merely the presence of a gap that results in mutagenesis. Our results suggest that mutagenesis can occur during the gap-filling step of base excision repair in vivo.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S. | Comparative Study
Authors
Clairmont CA, Sweasy JB
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference