Take our Survey

Reference: Aldrich TL, et al. (1993) Structure of the yeast TAP1 protein: dependence of transcription activation on the DNA context of the target gene. Mol Cell Biol 13(6):3434-44

Reference Help

Abstract


Sequence data are presented for the Saccharomyces cerevisiae TAP1 gene and for a mutant allele, tap1-1, that activates transcription of the promoter-defective yeast SUP4 tRNA(Tyr) allele SUP4A53T61. The degree of in vivo activation of this allele by tap1-1 is strongly affected by the nature of the flanking DNA sequences at 5'-flanking DNA sequences as far away as 413 bp from the tRNA gene and by 3'-flanking sequences as well. We considered the possibility that this dependency is related to the nature of the chromatin assembled on these different flanking sequences. TAP1 encodes a protein 1,006 amino acids long. The tap1-1 mutation consists of a thymine-to-cytosine DNA change that changes amino acid 683 from tyrosine to histidine. Recently, Amberg et al. reported the cloning and sequencing of RAT1, a yeast gene identical to TAP1, by complementation of a mutant defect in poly(A) RNA export from the nucleus to the cytoplasm (D. C. Amberg, A. L. Goldstein, and C. N. Cole, Genes Dev. 6:1173-1189, 1992). The RAT1/TAP1 gene product has extensive sequence similarity to a yeast DNA strand transfer protein that is also a riboexonuclease (variously known as KEM1, XRN1, SEP1, DST2, or RAR5; reviewed by Kearsey and Kipling [Trends Cell Biol. 1:110-112, 1991]). The tap1-1 amino acid substitution affects a region of the protein in which KEM1 and TAP1 are highly similar in sequence.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S. | Comparative Study
Authors
Aldrich TL, Di Segni G, McConaughy BL, Keen NJ, Whelen S, Hall BD
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference