Reference: Rospert S, et al. (1993) Identification and functional analysis of chaperonin 10, the groES homolog from yeast mitochondria. Proc Natl Acad Sci U S A 90(23):10967-71

Reference Help

Abstract


Chaperonin 60 (cpn60) and chaperonin 10 (cpn10) constitute the chaperonin system in prokaryotes, mitochondria, and chloroplasts. In Escherichia coli, these two chaperonins are also termed groEL and groES. We have used a functional assay to identify the groES homolog cpn10 in yeast mitochondria. When dimeric ribulose-1,5-bisphosphate carboxylase (Rubisco) is denatured and allowed to bind to yeast cpn60, subsequent refolding of Rubisco is strictly dependent upon yeast cpn10. The heterologous combination of cpn60 from E. coli plus yeast cpn10 is also functional. In contrast, yeast cpn60 plus E. coli cpn10 do not support refolding of Rubisco. In the presence of MgATP, yeast cpn60 and yeast cpn10 form a stable complex that can be isolated by gel filtration and that facilitates refolding of denatured Rubisco. Although the potassium-dependent ATPase activity of E. coli cpn60 can be inhibited by cpn10 from either E. coli or yeast, neither of these cpn10s inhibits the ATPase activity of yeast cpn60. Amino acid sequencing of yeast cpn10 reveals substantial similarity to the corresponding cpn10 proteins from rat mitochondria and prokaryotes.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Comparative Study
Authors
Rospert S, Glick BS, Jeno P, Schatz G, Todd MJ, Lorimer GH, Viitanen PV
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference