Reference: Kolaczkowski M, et al. (1998) In vivo characterization of the drug resistance profile of the major ABC transporters and other components of the yeast pleiotropic drug resistance network. Microb Drug Resist 4(3):143-58

Reference Help

Abstract


Multidrug resistance (MDR) mediated by broad specificity transporters is one of the most important strategies used by pathogens, including cancer cells, to evade chemotherapy. In the yeast Saccharomyces cerevisiae, a complex pleiotropic drug resistance (PDR) network of genes involved in MDR is composed of the transcriptional regulators Pdr1p and Pdr3p, which activate expression of the ATP-binding cassette (ABC) MDR transporters-encoding genes PDR5, SNQ2, and YOR1 as well as other not yet identified genes. We have screened 349 toxic compounds in isogenic S. cerevisiae strains deleted of PDRS, SNQ2, or YOR1 in different combinations as well as both PDR1 and PDR3. The screen revealed extremely promiscuous, yet limited, and to a large extent overlapping but distinct drug resistance profiles of Pdr5p, Snq2p, and Yor1p. These ABC-MDR transporters mediated resistance to most currently available classes of clinically and agriculturally important fungicides and also to many antibiotics, herbicides, and others. Several classes of compounds were identified for the first time in the drug resistance spectrum of MDR transporters. These are fungicides, such as anilinopyrimidines, benzimidazoles, benzenedicarbonitriles, dithiocarbamates, guanidines, imidothiazoles, polyenes, pyrimidynyl carbinols, and strobilurine analogues; the urea derivative and anilide herbicides; flavonoids, several membrane lipids resembling detergents; and newly synthesized lysosomotropic aminoesters; as well as many others. Identification of compounds showing Pdr1p, Pdr3p-dependent, but Pdr5p-, Snq2p-, and Yor1p-independent toxicity, reflected in the case of rhodamine 6G, by efflux alterations, suggests the involvement of new drug resistance genes and is a first step toward their identification. The highly increased toxicity of bile acids toward the PDR1, PDR3 double disruptant together with the decreased level of BAT1 promoter dependent beta-galactosidase activity suggest that the Bat1p ABC transporter is a new member of the PDR network. Our results may contribute to a better understanding of the mechanism of MDR, in particular in the pathogenic yeast Candida albicans. They also provide and indication of the physiological function of MDR transporters and suggest new approaches for the cloning of the mammalian bile acid transporters.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Kolaczkowski M, Kolaczowska A, Luczynski J, Witek S, Goffeau A
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference