Reference: Chirico WJ, et al. (1998) Conformational changes of an Hsp70 molecular chaperone induced by nucleotides, polypeptides, and N-ethylmaleimide. Biochemistry 37(39):13862-70

Reference Help

Abstract


Hsp70 molecular chaperones are highly conserved ATPases that guide the folding and assembly of proteins in many cellular pathways. They use the energy of ATP binding and hydrolysis to regulate their interactions with hydrophobic regions of unfolded proteins. The activities and the conformations of the N-terminal nucleotide- and C-terminal polypeptide-binding domains of Hsp70s are coupled. We recently reported that the sulfhydryl-modifying reagent N-ethylmaleimide (NEM) inactivates the yeast Hsp70 Ssa1p by reacting with its three cysteine residues which are located in the nucleotide-binding domain. To further characterize conformational changes associated with interdomain coupling and to determine whether NEM alters Ssa1p's conformation, the structures of Ssa1p and NEM-modified Ssa1p (NEM-Ssa1p) were compared using a variety of biophysical techniques. Size exclusion chromatography revealed that NEM-Ssa1p is more oligomeric and more resistant to nucleotide- or polypeptide-dependent depolymerization than Ssa1p. Measurement of the thermal stability indicated that NEM modification has an effect very similar to that of binding of nucleotides to the unmodified protein. Circular dichroism demonstrated small differences in the secondary structure of Ssa1p and NEM-Ssa1p, and in their complexes with nucleotides. NEM modification increased the ANS fluorescence of Ssa1p and exposed numerous trypsin-sensitive sites in its nucleotide-binding domain. The intrinsic fluorescence of Ssa1p's only tryptophan residue, which is located in a C-terminal alpha-helical region adjacent to the polypeptide-binding cleft, was quenched in the presence of ATP, but not ADP. NEM modification altered nucleotide-dependent changes in the intrinsic fluorescence of Ssa1p. Together, these results demonstrate that NEM alters the conformation of Ssa1p and disrupts, but does not eliminate, interdomain communication. Furthermore, the results provide evidence for a model in which the polypeptide-binding cleft of Hsp70s is covered by an alpha-helical lid that is open in the presence of ATP, but closed in the presence of ADP.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Chirico WJ, Markey ML, Fink AL
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference