Reference: Watkins PA, et al. (1998) Disruption of the Saccharomyces cerevisiae FAT1 gene decreases very long-chain fatty acyl-CoA synthetase activity and elevates intracellular very long-chain fatty acid concentrations. J Biol Chem 273(29):18210-9

Reference Help

Abstract


Activation of fatty acids to their coenzyme A derivatives is necessary for subsequent metabolism. Very long-chain fatty acids, which accumulate in tissues of patients with X-linked adrenoleukodystrophy, are activated by very long-chain acyl-CoA synthetase (VLCS) normally found in peroxisomes and microsomes. We identified a candidate yeast VLCS gene (FAT1), previously identified as encoding a fatty acid transport protein, by its homology to rat liver peroxisomal VLCS. Disruption of this gene decreased, but did not abolish, cellular VLCS activity. Fractionation studies showed that VLCS activity, but not long-chain acyl-CoA synthetase activity, was reduced to about 40% of wild-type level in both 27,000 x g supernatant and pellet fractions. Separation of organelles in the pellet fraction by density gradient centrifugation revealed that VLCS activity was associated with peroxisomes and microsomes but not mitochondria. FAT1 deletion strains exhibited decreased growth on medium containing dextrose, oleic acid, and cerulenin, an inhibitor of fatty acid synthesis. FAT1 deletion strains grown on either dextrose or oleic acid medium accumulated very long-chain fatty acids. Compared with wild-type yeast, C22:0, C24:0, and C26:0 levels were increased approximately 20-, 18-, and 3-fold in deletion strains grown on dextrose, and 2-, 7-, and 5-fold in deletion strains grown on oleate. Long-chain fatty acid levels in wild-type and deletion strains were not significantly different. All biochemical defects in FAT1 deletion strains were restored to normal after functional complementation with the FAT1 gene. The level of VLCS activity measured in both wild-type and deletion yeast strains transformed with FAT1 cDNA paralleled the level of expression of the transgene. The extent of both the decrease in peroxisomal VLCS activity and the very long-chain fatty acid accumulation in the yeast FAT1 deletion model resembles that observed in cells from X-linked adrenoleukodystrophy patients. These studies suggest that the FAT1 gene product has VLCS activity that is essential for normal cellular very long-chain fatty acid homeostasis.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Watkins PA, Lu JF, Steinberg SJ, Gould SJ, Smith KD, Braiterman LT
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference