Reference: Yamakura F, et al. (1998) Inactivation and destruction of conserved Trp159 of Fe-superoxide dismutase from Porphyromonas gingivalis by hydrogen peroxide. Eur J Biochem 253(1):49-56

Reference Help

Abstract


The superoxide dismutase (SOD) of Porphyromonas gingivalis, an obligate anaerobe, was purified from Escherichia coli (sodA sodB mutant) harboring the P. gingivalis SOD-encoding gene. The purified protein contained both iron and a small amount of manganese. Iron- and manganese-reconstituted SOD, which contained one of these metals exclusively, showed specific activities of 1000 and 1200 U/mg/mol of metals/subunit, respectively. These values were similar to the specific activity of the native enzyme purified from the recombinant E. coli strain. The Fe-reconstituted enzyme was inactivated by 10 mM hydrogen peroxide to about 5% of its original activity after a 15 min incubation at 25 degrees C at pH 7.8, whereas the Mn-reconstituted enzyme showed no inactivation after 80 min. A concomitant increase in absorbance at 320 nm was observed with inactivation of the Fe-reconstituted enzyme. Amino acid analysis of the inactivated Fe-reconstituted enzyme showed a decrease of about 0.7 residues of tryptophan/subunit, a value similar to the iron content of the iron-reconstituted enzyme. Three major peptides of the digests of the purified SOD with lysylendopeptidase were separated by a reverse-phase HPLC monitoring at 280 nm. One of the peptides, corresponding to the residues from Gly149 to Lys176, decreased in the HPLC eluent of the H2O2-inactivated SOD to 20% of the amount measured for native SOD. Since this peptide contains only one tryptophan residue, it was concluded that the decomposed tryptophan residue is Trp159, which is located midway between the third and fourth metal ligands, Asp157 and His161, and is conserved in aligned amino acid sequences of all known Fe-SODs and Mn-SODs. Based on these results, we propose that the differences in hydrogen peroxide sensitivities observed for the Fe-SODs and Mn-SODs may be caused by the difference in the identity of the active site metal in the Fe-SODs and Mn-SODs and a tuning of the properties of the iron center in the Fe-SODs.

Reference Type
Journal Article
Authors
Yamakura F, Rardin RL, Petsko GA, Ringe D, Hiraoka BY, Nakayama K, Fujimura T, Taka H, Murayama K
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference