Reference: Xiao W and Chow BL (1998) Synergism between yeast nucleotide and base excision repair pathways in the protection against DNA methylation damage. Curr Genet 33(2):92-9

Reference Help

Abstract


The treatment of cells with simple DNA methylating agents such as methyl methanesulfonate (MMS) results in genotoxic lesions, including 3-methyladenine which blocks DNA replication. All the organisms studied to date contain an alkylation-specific base excision repair pathway. In the yeast Saccharomyces cerevisiae, the base excision repair pathway is initiated by a Mag1 3-methyladenine DNA glycosylase that removes the damaged base, followed by the Apn1 apurinic/apyrimidinic endonuclease which cleaves the DNA strand at the abasic site for subsequent repair and synthesis. Several nucleotide excision repair pathway mutants display only slightly increased sensitivity to killing by MMS, indicating that nucleotide excision repair per se does not play a major role in the repair of DNA methylation damage. However, mag1 and apn1 mutants that are also defective in nucleotide excision repair are extremely sensitive to MMS-induced killing and the effects are synergistic. These observations suggest that nucleotide excision repair and alkylation-specific base excision repair provide alternative pathways for the repair of DNA methylation damage. In addition to their role in nucleotide excision repair, Rad1 and Rad10 form a complex that is involved in recombination repair. It was found that the apn1 rad1 and apn1 rad10 double mutants have a growth defect and are significantly more sensitive to MMS killing than apn1 rad2 and apn1 rad4 double mutants in a gradient plate assay. Furthermore, the apn1 rad1 double mutant increased both the spontaneous and MMS-induced mutation frequency. Thus, the recombination repair defects of rad1 and rad10 may confer an additional synergistic effect when combined with the apn1 mutation.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Xiao W, Chow BL
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference