Reference: Bone N, et al. (1998) Regulated vacuole fusion and fission in Schizosaccharomyces pombe: an osmotic response dependent on MAP kinases. Curr Biol 8(3):135-44

Reference Help

Abstract


Background: The budding yeast Saccharomyces cerevisiae uses two mitogenactivated protein (MAP) kinase cascades, the Hog1p and the Mpk1p pathways, to signal responses to hypertonic and hypotonic stress, respectively. Mammalian cells and the fission yeast Schizosaccharomyces pombe have functional homologues of Hog1p - p38/RK/CSBP and Sty1 - which, unlike Hog1p, also mediate other responses. We have investigated the involvement of S. pombe MAP kinase pathways in signalling a newly described response to osmotic stress - that of vacuole fusion and fission.

Results: When S. pombe is placed into water, its vacuoles rapidly fuse into larger structures enclosing a greater proportion of the cell's volume. Under some conditions, its vacuoles can slowly fragment in response to salt. Fission requires the Sty1 pathway and also Pmk1, the homologue of S. cerevisiae Mpk1p. Fusion requires Pmk1, Ypt7 - the homologue of a protein involved in S. cerevisiae vacuole fusion - and part of the Sty1 pathway, although Sty1 phosphorylation is unaffected by hypotonic conditions.

Conclusions: Vacuole fusion and fission appear to be homeostatic mechanisms that restore the concentration of the cytosol. Vacuole fusion, like stimulated secretion in higher eukaryotes, is a rapid and specific process of membrane fusion in response to an external stimulus. The Sty1 pathway, in addition to its role in responding to hypertonic stress, is required at a basal level for the expression of factors required to respond to hypotonic stress - a mechanism that may allow the cell to use a common pathway for different responses.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Bone N, Millar JB, Toda T, Armstrong J
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference