Reference: Teigelkamp S, et al. (1997) The human U5 snRNP-specific 100-kD protein is an RS domain-containing, putative RNA helicase with significant homology to the yeast splicing factor Prp28p. RNA 3(11):1313-26

Reference Help

Abstract


Through UV-crosslinking experiments, we previously provided evidence suggesting that a U5 snRNP protein with a molecular weight in the 100-kDa range is an ATP-binding protein (Laggerbauer B, Lauber J, Lührmann R, 1996, Nucleic Acid Res 24:868-875). Separation of HeLa U5 snRNP proteins on 2D gels revealed multiple variants with apparent molecular masses of 100 kDa. Subsequent microsequencing of these variants led to the isolation of a cDNA encoding a protein with an N-terminal RS domain and a C-terminal domain that contains all of the conserved motifs characteristic of members of the DEAD-box family of RNA-stimulated ATPases and RNA helicases. Antibodies raised against cDNA-encoded 100-kDa protein specifically recognized native U5-100kD both on immunoblots and in purified HeLa U5 snRNPs or [U4/U6.U5] tri-snRNP complexes, confirming that the bona fide 100-kDa cDNA had been isolated. In vitro phosphorylation studies demonstrated that U5-100kD can serve as a substrate for both Clk/Sty and the U1 snRNP-associated kinase, and further suggested that the multiple U5-100kD variants observed on 2D gels represent differentially phosphorylated forms of the protein. A database homology search revealed a significant degree of homology (60% similarity, 37% identity) between the Saccharomyces cerevisiae splicing factor, Prp28p, which lacks an N-terminal RS domain, and the C-terminal domain of U5-100kD. Consistent with their designation as structural homologues, anti-Prp28 antibodies recognized specifically the human U5-100kD protein on immunoblots. Together with the DEXH-box U5-200kD protein (Lauber J et al., 1996, EMBO J 15:4001-4015), U5-100kD is the second example of a putative RNA helicase that is tightly associated with the U5 snRNP. Given the recent identification of the U5-116kD protein as a homologue of the ribosomal translocase EF-2 (Fabrizio P, Laggerbauer B, Lauber J, Lane WS, Lührmann R, 1997, EMBO J 16:4092-4106), at least three integral U5 snRNP proteins thus potentially facilitate conformational changes in the spliceosome during nuclear pre-mRNA splicing.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Teigelkamp S, Mundt C, Achsel T, Will CL, Lührmann R
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference