Reference: Müller V, et al. (1997) Mutagenesis of some positive and negative residues occurring in repeat triad residues in the ADP/ATP carrier from yeast. Biochemistry 36(50):16008-18

Reference Help

Abstract


In AAC2 from Saccharomyces cerevisiae, nine additional charged residues (six positive, three negative) were neutralized by mutagenesis following the previous mutation of six arginines. Oxidative phosphorylation (OxPhos) in cells and mitochondria, the expression level of AAC protein, and the various transport modes of AAC in the reconstituted system were measured. Mutations are: within the first helix at K38A which is exclusive for AAC; K48A, and R152A, part of a positive triad occurring in the matrix portion of each repeat; two matrix lysines, K179M and K182I, and the negative triad helix-terminating residues, E45G, D149S, D249S. Cellular ATP synthesis (OxPhos) is nearly completely inhibited in K48A, R152A, D149S, and D249S, but still amounts to 10% in K38A and between 30% and 90% in the gly+ mutants K179M, K179I + K182I, and E45G. Comparison of the AAC content measured by ELISA and the binding of [3H]CAT and [3H]BKA reveals discrepancies in K48A, D149S, and D249S mitochondria, which provide evidence that these mutations largely abolish inhibitor binding. Also these mitochondria have undetectable OxPhos. Differently in K38A, CAT and BKA binding are retained at high AAC levels but OxPhos is very low. This reveals a special functional role of K38, different from the more structural role of R152, K48, D149, and D249. Transport activity was measured with reconstituted AAC. The electroneutral ADP/ADP exchange of gly- mutants is largely or fully suppressed in K48A, D149S, and D249S. K38A and R152A are still active at 18% and 30% of wt. The other three exchange modes, ATP/ADP, ADP/ATP, and ATP/ATP, are nearly suppressed in all gly- mutants but remain high in gly+ mutants. ATP-linked modes are higher than the ADP/ADP mode in gly+ but lower in gly- mutants, resulting in an exchange mode inversion (EMI). In the competition for AAC2 transport capacity, the weak ATP exporting modes are suppressed by the much stronger unproductive ADP/ADP mode causing inhibition of OxPhos. Together with previous results all members of three charge triads are now mutagenized, revealing drastic functional rotatory asymmetries within the three repeat domains. In the intrahelical arginine triad the third (R294A), in the positive matrix triad the second (R152A), and in the helix-terminating negative triad the first (E45G) still show high activity.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Müller V, Heidkämper D, Nelson DR, Klingenberg M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference