Reference: Sträter N, et al. (1997) Mechanisms of catalysis and allosteric regulation of yeast chorismate mutase from crystal structures. Structure 5(11):1437-52

Reference Help

Abstract


Background: Chorismate mutase (CM) catalyzes the Claisen rearrangement of chorismate to prephenate, notably the only known enzymatically catalyzed pericyclic reaction in primary metabolism. Structures of the enzyme in complex with an endo-oxabicyclic transition state analogue inhibitor, previously determined for Bacillus subtilis and Escherichia coli CM, provide structural insight into the enzyme mechanism. In contrast to these bacterial CMs, yeast CM is allosterically regulated in two ways: activation by tryptophan and inhibition by tyrosine. Yeast CM exists in two allosteric states, R (active) and t (inactive).

Results: We have determined crystal structures of wild-type yeast CM cocrystallized with tryptophan and an endo-oxabicyclic transition state analogue inhibitor, of wild-type yeast CM co-crystallized with tyrosine and the endo-oxabicyclic transition state analogue inhibitor and of the Thr226-->Ser mutant of yeast CM in complex with tryptophan. Binding of the transition state analogue inhibitor to CM keeps the enzyme in a 'super R' state, even if the inhibitory effector tyrosine is bound to the regulatory site.

Conclusions: The endo-oxabicyclic inhibitor binds to yeast CM in a similar way as it does to the distantly related CM from E. coli. The inhibitor-binding mode supports a mechanism by which polar sidechains of the enzyme bind the substrate in the pseudo-diaxial conformation, which is required for catalytic turnover. A lysine and a protonated glutamate sidechain have a critical role in the stabilization of the transition state of the pericyclic reaction. The allosteric transition from T-->R state is accompanied by a 15 degrees rotation of one of the two subunits relative to the other (where 0 degrees rotation defines the T state). This rotation causes conformational changes at the dimer interface which are transmitted to the active site. An allosteric pathway is proposed to include residues Phe28, Asp24 and Glu23, which move toward the activesite cavity in the T state. In the presence of the transition-state analogue a super R state is formed, which is characterised by a 22 degrees rotation of one subunit relative to the other.

Reference Type
Comparative Study | Journal Article
Authors
Sträter N, Schnappauf G, Braus G, Lipscomb WN
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference