Reference: Blomberg A (1997) Osmoresponsive proteins and functional assessment strategies in Saccharomyces cerevisiae. Electrophoresis 18(8):1429-40

Reference Help

Abstract


Cells respond to increased external osmolarities by enhanced accumulation of compatible solutes. In yeast-cells, mainly exemplified by Saccharomyces cerevisiae, the premier compatible solute is the polyhydroxy-alcohol glycerol, the production of which is accompanied by overall metabolic changes. By applying two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) coupled to computerized image quantification, a large body of valuable physiological information relating to this stress-adaptation has been gathered. One of the presumed key-enzymes in the production of glycerol in the cell is glycerol 3-phosphate dehydrogenase encoded by the GPD1 gene. The amount of this protein is enhanced during saline stress, and from 2-D analysis linked to microsequencing it became apparent that the osmo-regulated from contained a putative presequence. Sequence analysis of another salt-induced spot in the 2-D pattern revealed identity to a gene, YER062c, with previously unknown function. Biochemical characterization of this protein, including standard purification via chromatography and subsequent activity/specificity measurements, identified this salt-regulated protein as the missing protein/gene in glycerol production, namely the glycerol 3-phosphatase. The sequence of another salt regulated protein resolved in the 2-D gel revealed identity to a bacterial dihydroxyacetone kinase, thus indicating salt induced glycerol dissimilation. Comparing Northern data to the 2-D generated expression pattern revealed a strong correlation, indicating mainly regulation at the transcriptional level. In addition, altered expression during saline growth of some of the glycolytic enzymes was also apparent. Signalling mutants, either in the cAMP-dependent protein kinase A pathway or in a protein kinase cascade, have been analyzed during osmotic stress via 2-D PAGE, grouping proteins/genes apparently regulated via similar mechanismus. Proteome analysis has proven invaluable in the unravelling of the molecular physiology of yeast cells during adaptation and growth under osmotic stress, identifying vital components not selected by purely genetic approaches.

Reference Type
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't | Review
Authors
Blomberg A
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference