Reference: Boscheinen O, et al. (1997) Heat stress transcription factors from tomato can functionally replace HSF1 in the yeast Saccharomyces cerevisiae. Mol Gen Genet 255(3):322-31

Reference Help

Abstract


The fact that yeast HSF1 is essential for survival under nonstress conditions can be used to test heterologous Hsfs for the ability to substitute for the endogenous protein. Our results demonstrate that like Hsf of Drosophila, tomato Hsfs A1 and A2 can functionally replace the corresponding yeast protein, but Hsf B1 cannot. In addition to survival at 28 degrees C, we checked the transformed yeast strains for temperature sensitivity of growth, induced thermotolerance and activator function using two different lacZ reporter constructs. Tests with full-length Hsfs were supplemented by assays using mutant Hsfs lacking parts of their C-terminal activator region or oligomerization domain, or containing amino acid substitutions in the DNA-binding domain. Remarkably, results with the yeast system are basically similar to those obtained by the analysis of the same Hsfs as transcriptional activators in a tobacco protoplast assay. Most surprising is the failure of HsfB1 to substitute for the yeast Hsf. The defect can be overcome by addition to HsfB1 of a short C-terminal peptide motif from HsfA2 (34 amino acid residues), which represents a type of minimal activator necessary for interaction with the yeast transcription apparatus. Deletion of the oligomerization domain (HR-A/B) does not interfere with Hsf function for survival or growth at higher temperatures. But monomeric Hsf has a markedly reduced affinity for DNA, as shown by lacZ reporter and band-shift assays.

Reference Type
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't
Authors
Boscheinen O, Lyck R, Queitsch C, Treuter E, Zimarino V, Scharf KD
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference