Reference: Dubois E and Messenguy F (1997) Integration of the multiple controls regulating the expression of the arginase gene CAR1 of Saccharomyces cerevisiae in response to differentnitrogen signals: role of Gln3p, ArgRp-Mcm1p, and Ume6p. Mol Gen Genet 253(5):568-80

Reference Help

Abstract


Expression of the catabolic gene encoding arginase in Saccharomyces cerevisiae, CAR1, is controlled by multiple nitrogen signals, such as the presence of the inducer, arginine, and the nature and amount of the nitrogen source. The present study has determined or confirmed the identity of the proteins involved in these different controls, as well as their targets in the CAR1 promoter. We show that Gln3p activates CAR1 expression through the GATAA sequences in the absence of an optimal nitrogen source, such as ammonia, glutamine or asparagine. Ume6p, which also controls the expression of early meiotic genes, represses CAR1 expression through a sequence called URS, as a function of nitrogen availability. Thus, the responses to the quality of the nitrogen source and to nitrogen starvation are achieved through different cis- and trans-regulatory elements. At least one of the multiple Rap1p and Abf1p binding sites is required for the basal transcription of the gene. The UAS(arg), containing the previously defined "arginine boxes" is the region that responds to the inducer through the action of the ArgRp-Mcm1p proteins, and its deletion alone significantly affects growth on arginine as sole nitrogen source. The functional UAS(arg) is about 60 nucleotides long, and contains two sequences homologous to the binding site for MADS-box proteins, to which ArgRIp and Mcm1p belong. No obvious palindromic sequence similar to the binding site of Gal4p, Ppr1p or Put3p is present in the UAS(arg), although ArgRIIp contains a Zn(II)2Cys6 motif. Interestingly, we have found that induction of CAR1 expression by arginine in the presence of an optimal nitrogen source is counteracted by Gln3p, independently of its action at the GATAA sequences.

Reference Type
Journal Article
Authors
Dubois E, Messenguy F
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference