Reference: Sugiyama T, et al. (1997) A single-stranded DNA-binding protein is needed for efficient presynaptic complex formation by the Saccharomyces cerevisiae Rad51 protein. J Biol Chem 272(12):7940-5

Reference Help

Abstract


Protein-promoted DNA strand exchange requires formation of an active presynaptic complex between the DNA-pairing protein and single-stranded DNA (ssDNA). Formation of such a contiguous filament is stimulated by a ssDNA-binding protein. Here, the effects of replication protein A (RPA) on presynaptic complex formation and DNA strand exchange activities of Rad51 protein were examined. Presynaptic complex formation was assessed by measuring ATP hydrolysis. With phiX174 ssDNA, the ATPase activity of Rad51 protein is stimulated approximately 1.4-fold by RPA, provided that Rad51 protein is in excess of the ssDNA concentration; otherwise, RPA inhibits ATPase activity. In contrast, with ssDNA devoid of secondary structure (poly(dT), poly(dA), poly(dI), and etheno-M13 DNA), RPA does not stimulate the already elevated ATPase activity of Rad51 protein, but inhibits activity at low Rad51 protein concentrations. These results suggest that Rad51 protein and RPA exclude one another from ssDNA by competing for the same binding sites and that RPA exerts its effect on presynaptic complex formation by eliminating secondary structure to which Rad51 protein is bound nonproductively. DNA strand exchange catalyzed by Rad51 protein is also greatly stimulated by RPA. The optimal stoichiometry for stimulation is approximately 20-30 nucleotides of ssDNA/RPA heterotrimer. The ssDNA-binding protein of Escherichia coli can substitute for RPA, showing that the role of RPA is not specific. We conclude that RPA affects both presynaptic complex formation and DNA strand exchange via changes in DNA structure, employing the same mechanism used by the ssDNA-binding protein to effect change in E. coli RecA protein activity.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Sugiyama T, Zaitseva EM, Kowalczykowski SC
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference