Reference: Weaver PL, et al. (1997) Dbp3p, a putative RNA helicase in Saccharomyces cerevisiae, is required for efficient pre-rRNA processing predominantly at site A3. Mol Cell Biol 17(3):1354-65

Reference Help

Abstract


In Saccharomyces cerevisiae, ribosomal biogenesis takes place primarily in the nucleolus, in which a single 35S precursor rRNA (pre-rRNA) is first transcribed and sequentially processed into 25S, 5.8S, and 18S mature rRNAs, leading to the formation of the 40S and 60S ribosomal subunits. Although many components involved in this process have been identified, our understanding of this important cellular process remains limited. Here we report that one of the evolutionarily conserved DEAD-box protein genes in yeast, DBP3, is required for optimal ribosomal biogenesis. DBP3 encodes a putative RNA helicase, Dbp3p, of 523 amino acids in length, which bears a highly charged amino terminus consisting of 10 tandem lysine-lysine-X repeats ([KKX] repeats). Disruption of DBP3 is not lethal but yields a slow-growth phenotype. This genetic depletion of Dbp3p results in a deficiency of 60S ribosomal subunits and a delayed synthesis of the mature 25S rRNA, which is caused by a prominent kinetic delay in pre-rRNA processing at site A3 and to a lesser extent at sites A2 and A0. These data suggest that Dbp3p may directly or indirectly facilitate RNase MRP cleavage at site A3. The direct involvement of Dbp3p in ribosomal biogenesis is supported by the finding that Dbp3p is localized predominantly in the nucleolus. In addition, we show that the [KKX] repeats are dispensable for Dbp3p's function in ribosomal biogenesis but are required for its proper localization. The [KKX] repeats thus represent a novel signaling motif for nuclear localization and/or retention.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Weaver PL, Sun C, Chang TH
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference