Reference: Minshull J, et al. (1996) Protein phosphatase 2A regulates MPF activity and sister chromatid cohesion in budding yeast. Curr Biol 6(12):1609-20

Reference Help

Abstract


Background: Mitosis is regulated by MPF (maturation promoting factor), the active form of Cdc2/28-cyclin B complexes. Increasing levels of cyclin B abundance and the loss of inhibitory phosphates from Cdc2/28 drives cells into mitosis, whereas cyclin B destruction inactivates MPF and drives cells out of mitosis. Cells with defective spindles are arrested in mitosis by the spindle-assembly checkpoint, which prevents the destruction of mitotic cyclins and the inactivation of MPF. We have investigated the relationship between the spindle-assembly checkpoint, cyclin destruction, inhibitory phosphorylation of Cdc2/28, and exit from mitosis.

Results: The previously characterized budding yeast mad mutants lack the spindle-assembly checkpoint. Spindle depolymerization does not arrest them in mitosis because they cannot stabilize cyclin B. In contrast, a newly isolated mutant in the budding yeast CDC55 gene, which encodes a protein phosphatase 2A (PP2A) regulatory subunit, shows a different checkpoint defect. In the presence of a defective spindle, these cells separate their sister chromatids and leave mitosis without inducing cyclin B destruction. Despite the persistence of B-type cyclins, cdc55 mutant cells inactivate MPF. Two experiments show that this inactivation is due to inhibitory phosphorylation on Cdc28: phosphotyrosine accumulates on Cdc28 in cdc55 delta cells whose spindles have been depolymerized, and a cdc28 mutant that lacks inhibitory phosphorylation sites on Cdc28 allows spindle defects to arrest cdc55 mutants in mitosis with active MPF and unseparated sister chromatids.

Conclusions: We conclude that perturbations of protein phosphatase activity allow MPF to be inactivated by inhibitory phosphorylation instead of by cyclin destruction. Under these conditions, sister chromatid separation appears to be regulated by MPF activity rather than by protein degradation. We discuss the role of PP2A and Cdc28 phosphorylation in cell-cycle control, and the possibility that the novel mitotic exit pathway plays a role in adaptation to prolonged activation of the spindle-assembly checkpoint.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Minshull J, Straight A, Rudner AD, Dernburg AF, Belmont A, Murray AW
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference