Reference: Moskowitz NK, et al. (1996) The amino terminus of Cdk2 binds p21. Oncol Res 8(9):343-52

Reference Help

Abstract


The cyclin-dependent kinase (Cdk) inhibitor known as p21, which is transcriptionally regulated by p53, can induce G1 arrest when overexpressed and inhibit the kinase activity of a wide variety of cyclin-Cdk complexes. Previous studies have demonstrated that a portion of the conserved region of p21 (amino acids 46-78), which is homologous to similar regions in the related Cdk inhibitors p27 and p57, can bind to Cdk2, and that this region is essential for kinase inhibition. However, the site(s) on Cdk2 that are involved in p21 binding have not been identified. We therefore created mutant Cdk2 molecules with various N-terminal and C-terminal deletions and tested each for their ability to bind to p21 by the yeast two-hybrid and the double-tagging assays. None of the deletion mutants tested bound to p21 by either assay. We next tested whether p21 could bind to Cdk7, a component of the cyclin-activating kinase complex. By both the double-tagging and yeast two-hybrid assays, p21 failed to bind to this protein, consistent with previous reports. However, hybrid molecules consisting of the amino-terminal half of Cdk2 and the carboxy-terminal half of Cdk7 (Cdk2/Cdk7) could bind to p21 by both assays, whereas the Cdk7/Cdk2 hybrids could not. Furthermore, the yeast Cdc28 protein, which is 65% identical with Cdk2, failed to bind to p21 by both the yeast two-hybrid and double-tagging assays. Cdk2/Cdc28 hybrids but not Cdc28/Cdk2 hybrids could bind to p21. These results suggest that the amino-terminal half of Cdk2 is important for p21 binding, consistent with the recently published crystal-lographic data. Our data also suggest that the three-dimensional structure of Cdk2 is likely altered by creating deletion mutants from either the amino- or carboxy-terminal end of the protein. Finally, we have mutated the Cdc28/Cdk2 hybrid protein and isolated several mutants, which are able to bind to p21. This approach may be useful for identifying residues in Cdk2 and Cdc28 that affect their ability to bind to p21 and complement the crystallographic data.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Moskowitz NK, Borao FJ, Dardashti O, Cohen HD, Germino FJ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference