Reference: Cook JG, et al. (1996) Two novel targets of the MAP kinase Kss1 are negative regulators of invasive growth in the yeast Saccharomyces cerevisiae. Genes Dev 10(22):2831-48

Reference Help

Abstract


Haploid cells of budding yeast Saccharomyces cerevisiae respond to mating pheromones by inducing genes required for conjugation, arresting cell cycle progression, and undergoing morphological changes. The same cells respond to nutrient deprivation by altering budding pattern and inducing genes required for invasive growth. Both developmental alternatives to vegetative proliferation require the MAP kinase Kss1 and the transcriptional transactivator Ste12. Using a two-hybrid screen for gene products that interact with Kss1, two homologous and previously uncharacterized loci (DIG1 and DIG2, for down-regulator of invasive growth) were identified. DIG2 is pheromone-inducible, whereas DIG1 is constitutively expressed. Dig1 colocalizes with Kssl in the nucleus, coimmunoprecipitates with Kss1 from cell extracts in a pheromone-independent manner, and is phosphorylated by Kss1 in immune complexes in a pheromone-stimulated manner. Kss1 binds specifically to a GST-Dig1 fusion in the absence of any other yeast protein. Using the two-hybrid method, both Dig1 and Dig2 also interact with the other MAP kinase of the pheromone response pathway, Fus3. However, neither dig1 or dig2 single mutants, nor a dig1 dig2 double mutant, have a discernible effect on mating. In contrast, dig1 dig2 cells constitutively invade agar medium, whereas a dig1 dig2 ste12 triple mutant does not, indicating that Dig1 and Dig2 share a role in negatively regulating the invasive growth pathway. High-level expression of Dig1 suppresses invasive growth and also causes cells to appear more resistant to pheromone-imposed cell cycle arrest. Ste12 also binds specifically to GST-Dig1 in the absence of any other yeast protein. Collectively, these findings indicate that Dig1, and most likely Dig2, are physiological substrates of Kssl and suggest that they regulate Ste12 function by direct protein-protein interaction.

Reference Type
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Cook JG, Bardwell L, Kron SJ, Thorner J
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference