Reference: Pernambuco MB, et al. (1996) Glucose-triggered signalling in Saccharomyces cerevisiae: different requirements for sugar phosphorylation between cells grown on glucose and those grown on non-fermentable carbon sources. Microbiology (Reading) 142 ( Pt 7):1775-82

Reference Help

Abstract


Addition of glucose or fructose to cells of the yeast Saccharomyces cerevisiae grown on a nonfermentable carbon source triggers within a few minutes posttranslational activation of trehalase, repression of the CTT1 (catalase) and SSA3 (Hsp70) genes, and induction of the ribosomal protein genes RPL1, RPL25 and RPS33. By using appropriate sugar kinase mutants, it was shown that rapid glucose- or fructose-induced activation of trehalase requires phosphorylation of the sugar. On the other hand, partial induction of RPL1, RPL25 and RPS33 as well as partial repression of CTT1 and SSA3 were observed in the absence of sugar phosphorylation. In glucose-grown nitrogen-starved yeast cells readdition of a nitrogen source triggers activation of trehalase in a glucose- or fructose-dependent way, but with no apparent requirements for phosphorylation of the sugar. Repression of CTT1 and SSA3 under the same conditions was also largely dependent on the presence of the sugar and also in these cases there was a strong effect when the sugar could not be phosphorylated. Nitrogen induction of RPL1, RPL25 and RPS33 was much less dependent on the presence of the sugar, and only phosphorylated sugar caused a further increase in expression. These results show that two glucose-dependent signalling pathways, which can be distinguished on the basis of their requirement for glucose phosphorylation, appear to be involved in activation of trehalase, repression of CTT1 and SSA3 and induction of ribosomal protein genes. They also show that nutrient-induced repression of CTT1 and SSA3 is not a response to improvement of the growth conditions because the addition of nonmetabolizable sugar does not ameliorate the growth conditions. Similarly, the upshift in ribosomal protein synthesis cannot be a response to increased availability of energy or biosynthetic capacity derived from glucose, but it is apparently triggered to a significant extent by specific detection of glucose as such.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Pernambuco MB, Winderickx J, Crauwels M, Griffioen G, Mager WH, Thevelein JM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference