Reference: Smits HP, et al. (1996) High-affinity glucose uptake in Saccharomyces cerevisiae is not dependent on the presence of glucose-phosphorylating enzymes. Yeast 12(5):439-47

Reference Help

Abstract


Glucose uptake in Saccharomyces cerevisiae is believed to consist of two kinetically distinguishable components, the affinity of which is modulated during growth on glucose. It has been reported that triple hexose-kinase deletion mutants do not exhibit high-affinity glucose uptake. This raises the question of whether and how high-affinity glucose uptake is related to the presence of glucose-phosphorylating enzymes. In this study the kinetics of glucose uptake in both wild-type cells and cells of hexose-kinase deletion mutants, grown on either glycerol or galactose, were determined using a rapid-uptake method. In wild-type cells glucose uptake measured over either 5 s or 200 ms exhibited high affinity. In contrast, in cells of hexose-kinase deletion mutants the apparent affinity of glucose uptake was dependent on the time scale during which uptake was measured. Measurements on the 5-s scale showed apparent low-affinity uptake whereas measurements on the 200-ms scale showed high-affinity uptake. The affinity and maximal rate of the latter were comparable to those in wild-type cells. Using a simple model for a symmetrical facilitator, it was possible to simulate the experimentally determined relation between apparent affinity and the time scale used. The results suggest that high-affinity glucose transport is not necessarily dependent on the presence of glucose-phosphorylating enzymes. Apparent low-affinity uptake kinetics can arise as a consequence of an insufficient rate of removal of intracellular free glucose by phosphorylation. This study underlines the need to differentiate between influences of the translocator and of metabolism on the apparent kinetics of sugar uptake in yeast.

Reference Type
Journal Article
Authors
Smits HP, Smits GJ, Postma PW, Walsh MC, van Dam K
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference