Reference: Gopaul DN, et al. (1996) Inosine-uridine nucleoside hydrolase from Crithidia fasciculata. Genetic characterization, crystallization, and identification of histidine 241 as a catalytic site residue. Biochemistry 35(19):5963-70

Reference Help

Abstract


Protozoa depend on purine salvage for nucleic acid synthesis. An abundant salvage enzyme in Crithidia fasciculata is the inosine-uridine nucleoside hydrolase (IU-nucleoside hydrolase). The enzyme was cloned by polymerase chain reaction techniques using primers corresponding to the amino acid sequences of tryptic fragments and to the miniexon of C. fasciculata. The full-length cDNA was expressed in Escherichia coli and the protein purified to > 99% homogeneity. The open reading frame encodes a protein of 315 amino acids. Enzyme purified from C. fasciculata was missing the N-terminal Met and gave a major mass peak of 34 194 amu by mass spectrometry. Predicted mass from the DNA sequence for the Met-processed enzyme was 34 196. A pET3d-IUNH construct expressed in E. coli introduced MetAla instead of MetPro at the N-terminus. Enzyme purified from this construct also had a processed N-terminus and gave predicted and observed masses of 34 168 and 34 170 amu, respectively. The amino acid sequence for IU-nucleoside hydrolase has no close relatives among the known proteins. A cDNA clone of unknown function from Leishmania major shows near identity in the N-terminal deduced amino acid sequence. Open reading frames near 1 and 47 min on the E. coli chromosome and from two yeast genomes encode for proteins of similar size with substantial amino acid identity. Mutation of His241Ala caused a 2100-fold loss in k(cat) for inosine but a 2.8-fold increase in k(cat) with p-nitrophenyl beta-D-ribofuranoside, establishing the location of the catalytic site and implicating His241 as a proton donor for leaving group activation. IU-nucleoside hydrolase from C. fasciculata and the protein expressed in E. coli were crystallized and diffract to 2.5 and 2.1 A resolution, respectively. Both belong to the P2(1)2(1)2 orthorhombic space group with unit cell parameters a = 63.5 A, b = 131.9 A, c = 90.1 A, and alpha = beta = gamma = 90 degrees. Two subunits of the tetrameric enzyme are present in the asymmetric unit. The following paper reports the X-ray crystal structure for this enzyme.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Gopaul DN, Meyer SL, Degano M, Sacchettini JC, Schramm VL
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference