Reference: Thoden JB, et al. (1996) Crystal structures of the oxidized and reduced forms of UDP-galactose 4-epimerase isolated from Escherichia coli. Biochemistry 35(8):2557-66

Reference Help

Abstract


UDP-galactose 4-epimerase catalyzes the conversion of UDP-galactose to UDP-glucose through a mechanism involving the transient reduction of NAD+. Here we describe the X-ray structures for epimerase complexed with NADH/UDP, and NAD+/UDP, refined to 1.8 and 2.0 angstrom, respectively. The alpha-carbon positions for the two forms of the enzyme are superimposed with a root-mean-square deviation of 0.36 A. Overall, the models for the reduced and oxidized proteins are very similar except for the positions of several side chains including Phe 178 and Phe 218. The most striking difference between the oxidized and reduced enzymes is the conformation of the nicotinamide ring of the dinucleotide. In the reduced protein, the nicotinamide ring adopts the anti conformation while in the oxidized enzyme the syn conformation is observed. There are also significant structural differences in UDP binding between the oxidized and reduced forms of the protein which most likely explain the observation that uridine nucleotides bind more tightly to epimerase/NADH than to epimerase/NAD+. Both van der Waals and electrostatic interactions between epimerase and NAD+ are extensive with 35 contacts below 3.2 angstrom as would be expected for enzyme that binds the dinucleotide irreversibly. This is in sharp contrast to the patterns typically observed for the NAD+-dependent dehydrogenases which bind nucleotides in a reversible fashion. While it has been postulated that the active site of epimerase must contain a base, the only potential candidates within approximately 5 A of both the NAD+ and the UDP are Asp 31, Asp 58, and ASP 295. These amino acid residues, however, are intimately involved in nucleotide binding and most likely do not play a role in the actual catalytic mechanism. Thus it may be speculated that an amino acid residue, other than glutamate, aspartate, or histidine, may be functioning as the active site base.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Thoden JB, Frey PA, Holden HM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference