Reference: Matte A, et al. (1996) Crystal structure of Escherichia coli phosphoenolpyruvate carboxykinase: a new structural family with the P-loop nucleoside triphosphate hydrolase fold. J Mol Biol 256(1):126-43

Reference Help

Abstract


The crystal structure of ATP-dependent phosphoenolpyruvate carboxykinase (ATP-oxaloacetate carboxy-lyase, (transphosphorylating), E.C. 4.1.1.49; PCK) from Escherichia coli strain K12 has been determined using a combination of multiple isomorphous replacement, density modification, and partial model phase combination, and refined to a conventional R-index of 0.204 (Rfree = 0.244) at 1.9 A resolution. Each PCK molecule consists of a 275 residue N-terminal domain and 265 residue C-terminal or mononucleotide-binding domain, with the active site postulated to be within a cleft between the two domains. PCK is an open-faced, mixed alpha/beta protein, with each domain having an alpha/beta folding topology as found in several other mononucleoside-binding enzymes. The putative phosphate-binding site of ATP adopts the P-loop motif common to many ATP and GTP-binding proteins, and is similar in structure to that found within adenylate kinase. However, the beta-sheet topology within the mononucleotide-binding fold of PCK differs from all other families within the P-loop containing nucleoside triphosphate hydrolase superfamily, therefore suggesting it represents the first member in a new family of such proteins. The mononucleotide-binding domain is also different in structure compared to the classical mononucleotide-binding fold (CMBF) common to adenylate kinase, p21ras, and elongation factor-Tu. Several amino acid residues, including R65, K212, K213, H232, K254, D269, K288 and R333 appear to make up the active site of the enzyme, and are found to be absolutely conserved among known members of the ATP-dependent PCK family. A cysteine residue is located near the active-site, as has been suggested for other PCKs, although in the E. coli enzyme C233 is buried and so is most likely not involved in substrate binding or catalysis. Two binding sites of the calcium-analog TB3+ have been determined, one within the active site coordinating to the side-chain of D269, and the other within the C-terminal domain coordinating to the side-chains of E508 and E511.

Reference Type
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't
Authors
Matte A, Goldie H, Sweet RM, Delbaere LT
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference