Reference: Larsen TM, et al. (1996) A carboxylate oxygen of the substrate bridges the magnesium ions at the active site of enolase: structure of the yeast enzyme complexed with the equilibrium mixture of 2-phosphoglycerate and phosphoenolpyruvate at 1.8 A resolution. Biochemistry 35(14):4349-58

Reference Help

Abstract


The equilibrium mixture of yeast enolase with substrate, 2-phospho-D-glycerate (2-PGA), and product, phosphoenolpyruvate (P-enolpyruvate), has been crystallized from solutions of poly(ethylene glycol) (PEG) at pH 8.0. Crystals belong to the space group C2 and have unit cell dimensions a = 121.9 A, b = 73.2 A, c = 93.9 A, and beta = 93.3 degrees. The crystals have one dimer per asymmetric unit. Crystals of the equilibrium mixture and of the enolase complex of phosphonoacetohydroxamate (PhAH) are isomorphous, and the structure of the former complex was solved from the coordinates of enolase-(Mg2+)2-PhAH [Wedekind, J. E., Poyner, R. R., Reed, G. H., & Rayment, I. (1994) Biochemistry 33, 9333-9342]. The current crystallographic R-factor is 17.7% for all recorded data (92% complete) to 1.8 A resolution. The electron density map is unambiguous with respect to the positions and liganding of both magnesium ions and with respect to the stereochemistry of substrate/product binding. Both magnesium ions are complexed to functional groups of the substrate/product. The higher affinity Mg2+ coordinates to the carboxylate side chains of Asp 246, Glu 295, and Asp 320, both carboxylate oxygens of the substrate/product, and a water molecule. One of the carboxylate oxygens of the substrate/product also coordinates to the lower affinity Mg2+-thus forming a mu-carboxylato bridge. The other ligands of the second Mg2+ are a phosphoryl oxygen of the substrate/product, two water molecules, and the carbonyl and gamma-oxygens of Ser 39 from the active site loop. The intricate coordination of both magnesium ions to the carboxylate group suggests that both metal ions participate in stabilizing negative charge in the carbanion (aci-carboxylate) intermediate. The epsilon-amino group of Lys 345 is positioned to serve as the base in the forward reaction whereas the carboxylate side chain of Glu 211 is positioned to interact with the 3-OH of 2-PGA. The structure provides a candid view of the catalytic machinery of enolase.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Larsen TM, Wedekind JE, Rayment I, Reed GH
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference