Reference: Park MH, et al. (1993) Hypusine: its post-translational formation in eukaryotic initiation factor 5A and its potential role in cellular regulation. Biofactors 4(2):95-104

Reference Help

Abstract


The amino acid, hypusine [N epsilon-(4-amino-2-hydroxybutyl) lysine], a unique component of one cellular protein, eukaryotic translation initiation factor 5A (eIF-5A, old terminology eIF-4D), is formed post-translationally in two enzymatic steps: (i) transfer of the 4-aminobutyl moiety of the polyamine spermidine to the epsilon-amino group of a single specific lysine residue in the eIF-5A precursor protein to form an intermediate, deoxyhypusine, and (ii) subsequent hydroxylation in this 4-aminobutyl portion. Hypusine is produced soon after the translation of eIF-5A mRNA; the modification is essentially irreversible. Hypusine is found in all eukaryotes examined as well as in archaebacteria; it does not occur in eubacteria. The protein containing hypusine from each species displays a high degree of amino acid identity; the sequence of amino acids surrounding the hypusine residue is strictly conserved, suggesting the importance of the hypusine modification throughout evolution. Expression of one of the two yeast eIF-5A genes is required for survival and the lysine codon at the site of hypusine synthesis is vital for yeast growth. The precise cellular function of eIF-5A remains to be elucidated; however, eIF-5A stimulates methionyl-puromycin synthesis in a model assay for translation initiation and eIF-5A precursors containing lysine in place of hypusine are inactive in this assay. This provides evidence that the hypusine modification is needed for eIF-5A activity. In view of the important role of hypusine in eIF-5A and because of the narrow specificities of the enzymes involved in formation of this unusual amino acid, the hypusine biosynthetic steps offer promising targets for intervention in cellular proliferation. Spermidine analogs that are inhibitors of deoxyhypusine synthase in vitro also cause inhibition of hypusine formation in cells, together with a reduction in protein synthesis and in cell growth. In addition, certain metal chelating inhibitors of deoxyhypusine hydroxylase exhibit anti-proliferative effects by arresting mammalian cells at the G1/S boundary of the cell cycle. These results lay the foundation for the potential regulation of cellular events through the application of specific and potent inhibitors of hypusine biosynthesis.

Reference Type
Journal Article | Review
Authors
Park MH, Wolff EC, Folk JE
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference