Reference: Chen Y, et al. (1993) Identification of the C-terminal activator domain in yeast heat shock factor: independent control of transient and sustained transcriptional activity. EMBO J 12(13):5007-18

Reference Help

Abstract


In yeast, heat shock factor (HSF) is a trimer that binds DNA constitutively but only supports high levels of transcription upon heat shock. The C-terminal regions of HSF from Saccharomyces cerevisiae and Kluyveromyces lactis are unconserved yet both contain strong transactivators which are correctly regulated when substituted for each other. We have performed high resolution mapping of these activator domains which shows that in K.lactis HSF (KlHSF) activity can be located to a confined short domain, while in S.cerevisiae HSF (ScHSF) two separate regions are required for full activity. Alignment of the activator domains reveals similarity, as both overlap potential leucine zipper motifs (zipper C) with a distribution of hydrophobic residues similar to two highly conserved N-terminal domains which mediate HSF trimerization (zippers A and B). In higher eukaryotes a C-terminal leucine zipper is required to maintain HSF in a monomeric and non DNA-binding state under normal conditions and we therefore address the regulatory roles of the three leucine zipper motifs in KlHSF. Whilst the longest and most N-terminal of the trimer region zippers, A, is dispensable for regulation, mutation of a single leucine in zipper B makes HSF constitutively active. In contrast to the situation in higher eukaryotes disruption of zipper C has no observable regulatory effect and therefore, although an intramolecular contact between zippers B and C cannot be ruled out, such contact is not required for restraining the C-terminal activator domain. We furthermore find that deletions which abolish activator potential of the C-terminus render the host strain temperature sensitive. However, deletion of a double proline-glycine motif in the activator, whilst leaving HSF unable to respond to heat shock, does not cause temperature sensitivity. This result demonstrates that independent mechanisms control the transient and sustained activities of HSF.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Chen Y, Barlev NA, Westergaard O, Jakobsen BK
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference