Reference: Shuman S, et al. (1994) Covalent catalysis in nucleotidyl transfer reactions: essential motifs in Saccharomyces cerevisiae RNA capping enzyme are conserved in Schizosaccharomyces pombe and viral capping enzymes and among polynucleotide ligases. Proc Natl Acad Sci U S A 91(25):12046-50

Reference Help

Abstract


Formation of the 5' cap structure of eukaryotic mRNAs occurs via transfer of GMP from GTP to the 5' terminus of the primary transcript. RNA guanylyltransferase, the enzyme that catalyzes this reaction, has been isolated from many viral and cellular sources. Though differing in molecular weight and subunit structure, the various guanylyltransferases employ a common catalytic mechanism involving a covalent enzyme-(Lys-GMP) intermediate. Saccharomyces cerevisiae CEG1 is the sole example of a cellular capping enzyme gene. In this report, we describe the identification and characterization of the PCE1 gene encoding the capping enzyme from Schizosaccharomyces pombe. PCE1 was isolated from a cDNA library by functional complementation in Sa. cerevisiae. Induced expression of PCE1 in bacteria and in yeast confirmed that the 47-kDa Sc. pombe protein was enzymatically active. The amino acid sequence of PCE1 is 38% identical (152 of 402 residues) to the 52-kDa capping enzyme from Sa. cerevisiae. Comparison of the two cellular capping enzymes with guanylyltransferases encoded by DNA viruses revealed local sequence similarity at the enzyme's active site and at four additional collinear motifs. Mutational analysis of yeast CEG1 demonstrated that four of the five conserved motifs are essential for capping enzyme function in vivo. Remarkably, the same motifs are conserved in the polynucleotide ligase family of enzymes that employ an enzyme-(Lys-AMP) intermediate. These findings illuminate a shared structural basis for covalent catalysis in nucleotidyl transfer and suggest a common evolutionary origin for capping enzymes and ligases.

Reference Type
Comparative Study | Journal Article
Authors
Shuman S, Liu Y, Schwer B
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference