Reference: Søgaard M, et al. (1994) A rab protein is required for the assembly of SNARE complexes in the docking of transport vesicles. Cell 78(6):937-48

Reference Help

Abstract


Rab proteins are generally required for transport vesicle docking. We have exploited yeast secretion mutants to demonstrate that a rab protein is required for v-SNAREs and t-SNAREs to assemble. The absence of the rab protein in the docking complex suggests that, in a broad sense, rab proteins participate in a reaction catalyzing SNARE complex assembly. In so doing, rab proteins could help impart an additional layer of specificity to vesicle docking. This mechanism likely involves the Sec1 homolog Sly1, which we identified in isolated docking complexes. We also report the identification of a novel v-SNARE (Ykt6p) component of the yeast ER-Golgi docking complex that has a CAAX box and is predicted to be lipid anchored. The surprising finding that docking complexes can contain many distinct species of SNAREs (Sed5p, Bos1p, Sec22p, Ykt6p, and likely Bet1p, p28, and p14) suggests that multimeric interactions are features of the fusion machinery, and may also improve the fidelity of vesicle targeting.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Søgaard M, Tani K, Ye RR, Geromanos S, Tempst P, Kirchhausen T, Rothman JE, Söllner T
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence