Reference: Monk BC and Perlin DS (1994) Fungal plasma membrane proton pumps as promising new antifungal targets. Crit Rev Microbiol 20(3):209-23

Reference Help

Abstract


Fungi are widely dispersed in nature and frequently appear as pathogens in the animal and plant kingdoms. The incidence of opportunistic fungal infections in humans has increased due to the human immunodeficiency virus and the application of modern medical approaches that subvert natural protective barriers to infection. Also, fungal blights continue to threaten crops worldwide. As a result, new antifungal agents are needed to address these critical problems. Existing antifungals can be used to effectively treat most cases of topical infection caused by the opportunistic pathogen Candida albicans, which is the principal agent of nosocomially acquired fungal infections. However, life-threatening, disseminated Candida infections are treated with more modest success. Existing antifungals can be toxic or ineffective because of natural resistance or even induced resistance. This limited efficacy largely reflects the restricted range of cellular targets considered during the development of current antifungals. The advancement of highly selective fungicidal reagents requires the recognition of new essential cellular targets. The fungal plasma-membrane proton pump is a high-abundance essential enzyme with a number of well-understood molecular properties that should facilitate the development of new antifungals. The proton pump is important for intracellular pH regulation and the maintenance of electrochemical proton gradients needed for nutrient uptake. It is a member of the P-type class of ion-transport enzymes, which are present in nearly all external cellular membranes. Typical P-type enzymes such as the Na+,K(+)-ATPase and H+,K(+)-ATPase are well established as specific targets for surface-active cardiac glycosides and anti-ulcer therapeutics. The development of new classes of selective antifungals targeted to the proton pump will require exploitation of the well-characterized genetic, kinetic, topological, regulatory, and drug-interaction features of the fungal enzyme that discriminate it from related host P-type enzymes. New antifungal drugs of this type should be relevant to the control of fungal pathogens of medical and agricultural importance and may be applicable to the control of intracellular parasites that also depend on closely related proton pumps for survival.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S. | Review
Authors
Monk BC, Perlin DS
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference