Reference: Jörnvall H, et al. (1995) Short-chain dehydrogenases/reductases (SDR). Biochemistry 34(18):6003-13

Reference Help

Abstract


Short-chain dehydrogenases/reductases (SDR) constitute a large protein family. Presently, at least 57 characterized, highly different enzymes belong to this family and typically exhibit residue identities only at the 15-30% level, indicating early duplicatory origins and extensive divergence. In addition, another family of 22 enzymes with extended protein chains exhibits part-chain SDR relationships and represents enzymes of no less than three EC classes. Furthermore, subforms and species variants are known of both families. In the combined SDR superfamily, only one residue is strictly conserved and ascribed a crucial enzymatic function (Tyr 151 in the numbering system of human NAD(+)-linked prostaglandin dehydrogenase). Such a function for this Tyr residue in SDR enzymes in general is supported also by chemical modifications, site-directed mutagenesis, and an active site position in those tertiary structures that have been characterized. A lysine residue four residues downstream is also largely conserved. A model for catalysis is available on the basis of these two residues. Binding of the coenzyme, NAD(H) or NADP(H), is in the N-terminal part of the molecules, where a common GlyXXXGlyXGly pattern occurs. Two SDR enzymes established by X-ray crystallography show a one-domain subunit with seven to eight beta-strands. Conformational patterns are highly similar, except for variations in the C-terminal parts. Additional structures occur in the family with extended chains. Some of the SDR molecules are known under more than one name, and one of the enzymes has been shown to be susceptible to native, chemical modification, producing reduced Schiff base adducts with pyruvate and other metabolic keto derivatives. Most SDR enzymes are dimers and tetramers. In those analyzed, the area of major subunit contacts involves two long alpha-helices (alpha E, alpha F) in similar and apparently strong subunit interactions. Future possibilities include verification of the proposed reaction mechanism and tracing of additional relationships, perhaps also with other protein families. Short-chain dehydrogenases illustrate the value of comparisons and diversified research in generating unexpected discoveries.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S. | Review
Authors
Jörnvall H, Persson B, Krook M, Atrian S, Gonzàlez-Duarte R, Jeffery J, Ghosh D
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference