Reference: Pavlovic J, et al. (1993) Mx proteins: GTPases involved in the interferon-induced antiviral state. Ciba Found Symp 176:233-43; discussion 243-7

Reference Help

Abstract


Mx proteins have molecular masses between 70 and 80 kDa and their synthesis is tightly regulated by interferons in mammalian and non-mammalian vertebrates. Some Mx proteins function as intracellular mediators of the interferon-induced antiviral state. When suitable cDNA constructs were constitutively expressed in mouse 3T3 cells the mouse nuclear Mx1 protein conferred selective resistance to influenza virus. The human cytoplasmic MxA protein conferred resistance to influenza virus and vesicular stomatitis virus but not to other viruses. Mx1 blocks influenza virus mRNA synthesis within the nucleus of infected cells. Mx1 presumably interacts with the influenza virus polymerase subunit PB2, because overexpression of PB2 titrates out the Mx1 block. MxA does not inhibit mRNA synthesis of influenza virus; it inhibits a subsequent cytoplasmic viral multiplication step. A possible target is the transport of newly synthesized influenza virus polymerase proteins back to the nucleus. Inhibition by MxA of vesicular stomatitis virus, which replicates in the cytoplasm, is at the transcriptional level. Parts of the N-terminal halves of all known Mx proteins are highly conserved. They contain the typical GTP-binding motif and show significant homology to other members of a new family of GTPases that includes rat dynamin, Drosophila Shibire and the yeast proteins Vps1/Spo15 and Mgm1. Purified Mx1 and MxA proteins possess GTPase activity. The GTP/GDP conversion rates are about 40 per min, and Km values about 700 microM. Mx1 and MxA variants with mutations in the GTP-binding sequences that violate the consensus are unable to confer virus resistance in vivo or to hydrolyse GTP in vitro, suggesting that GTPase activity is necessary for antiviral activity of Mx proteins. We hypothesize that the antivirally active Mx proteins (directly or indirectly) bind to polymerase proteins of susceptible viruses, thereby abolishing normal viral polymerase function. Interaction of Mx with viral targets is probably a GTP-dependent process.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Review
Authors
Pavlovic J, Schröder A, Blank A, Pitossi F, Staeheli P
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference