Reference: Pompon D, et al. (1980) Flavocytochrome b2 (Baker's yeast). Deuterium isotope effect studied by rapid-kinetic methods as a probe for the mechanism of electron transfer. Eur J Biochem 104(2):479-88

Reference Help

Abstract


The use of DL-[2-2H]lactate in steady-state measurements of ferricyanide reduction by flavocytochrome b2 at 30 degrees C has previously yielded an isotope effect of 5 [F. Lederer (1974) Eur. J. Biochem. 46, 393--399]. We report here studies carried out at 5 degrees C with L-[2-2H]lactate, where flavin and heme reduction were observed in the stopped-flow apparatus, in the absence of acceptor. The generally biphasic reduction curves were analysed according to a new mathematical treatment which allowed us to derive microscopic constants from initial reduction rates. It has thus been possible to determine an isotope effect of 8 on flavin reduction, 6 on heme reduction, compared to 4 in the steady state. Consequently, two slightly rate-limiting steps occur after the first one where the alpha-hydrogen is abstracted. It has also been possible to calculate the substrate association and dissociation rate constants for intact enzyme. The studies were carried out in parallel on intact and cleaved cytochrome b2. The results suggest that proteolysis affects essentially the steps involved in flavin reduction, and not intramolecular electron transfer steps. Moreover, the experimental data obtained at low rates of electron entry have led us to reexamine a previously proposed scheme for electron transfer [Capeillère-Blandin, Bray, Iwatsubo and Labeyrie (1975) Eur. J. Biochem. 54, 549--566]. An alternative model based on computer-simulation studies will be presented in a paper in this journal.

Reference Type
Journal Article
Authors
Pompon D, Iwatsubo M, Lederer F
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference