Reference: Zaret KS and Sherman F (1984) Mutationally altered 3' ends of yeast CYC1 mRNA affect transcript stability and translational efficiency. J Mol Biol 177(1):107-35

Reference Help

Abstract


The cyc1-512 mutant of the yeast Saccharomyces cerevisiae contains a 38 base-pair deletion in the 3' non-coding region of the CYC1 gene, which encodes iso-1-cytochrome c. The deletion affects the CYC1 terminator, causing CYC1 mRNAs to be much longer and more unstable than normal. Previous genetic analysis of revertants of the cyc1-512 mutant indicated that the defect could be completely or partially restored by three classes of genetic events: chromosomal rearrangements; local genetic changes near the original cyc1-512 mutation; and suppressors at unlinked loci. We show that all the revertants with chromosomal rearrangements have breakpoints 3' to the CYC1 locus, resulting in the formation of CYC1 mRNA with new 3' non-coding regions and new 3' mRNA termini. One spontaneous cyc1-512 revertant has a 3' insertion that resembles a repetitive, transposable yeast sequence (Ty1); CYC1 transcripts end just within the bounds of this element. This study reveals that the different 3' non-coding sequences, which arose by chromosomal rearrangements, increase the stability of CYC1 mRNA and have varying effects upon the mRNA translational efficiency. Many of the cyc1-512 revertants contain only local genetic changes that create stronger terminators from the weak terminators observed in the cyc1-512 mutant. Several types of terminators in these revertants have been identified; some cause discrete termination over a relatively small region, while others cause heterogeneous termination over a 200 base-pair region. The DNA sequence changes for two cyc1-512 revertants occur in a region with homology to a consensus sequence for transcription termination in yeast that was proposed by Zaret & Sherman (1982). Two classes of extragenic suppressors of the cyc1-512 mutation have been identified. One class of the suppressors appears specifically to enhance termination at weak terminator sites, while the other class of suppressors appears to increase the stability of aberrantly long CYC1 mRNA. The results from this study support our previous suggestion (Zaret & Sherman, 1982) that, in contrast to the usual situation in higher eukaryotes, transcription termination and polyadenylation may be coupled processes in yeast.

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Zaret KS, Sherman F
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference