Reference: Robinson JS, et al. (1988) Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. Mol Cell Biol 8(11):4936-48

Reference Help

Abstract


Using a selection for spontaneous mutants that mislocalize a vacuolar carboxypeptidase Y (CPY)-invertase fusion protein to the cell surface, we identified vacuolar protein targeting (vpt) mutants in 25 new vpt complementation groups. Additional alleles in each of the eight previously identified vpt complementation groups (vpt1 through vpt8) were also obtained. Representative alleles from each of the 33 vpt complementation groups (vpt1 through vpt33) were shown to exhibit defects in the sorting and processing of several native vacuolar proteins, including the soluble hydrolases CPY, proteinase A, and proteinase B. Of the 33 complementation groups, 19 were found to contain mutant alleles that led to extreme defects. In these mutants, CPY accumulated in its Golgi complex-modified precursor form which was secreted by the mutant cells. Normal protein secretion appeared to be unaffected in the vpt mutants. The lack of significant leakage of cytosolic markers from the vpt mutant cells indicated that the vacuolar protein-sorting defects associated with these mutants do not result from cell lysis. In addition, the observation that the precursor rather than the mature forms of CPY, proteinase A, proteinase B were secreted from the vpt mutants was consistent with the fact that mislocalization occurred at a stage after Golgi complex-specific modification, but before final vacuolar sorting of these enzymes. Vacuolar membrane protein sorting appeared to be unaffected in the majority of the vpt mutants. However, a subset of the vpt mutants (vpt11, vpt16, vpt18, and vpt33) was found to exhibit defects in the sorting of a vacuolar membrane marker enzyme, alpha-mannosidase. Up to 50% of the alpha-mannosidase enzyme activity was found to be mislocalized to the cell surface in these vpt mutants. Seven of the vpt complementation groups (vpt3, vpt11, vpt15, vpt16, vpt18, vpt29, and vpt33) contained alleles that led to a conditional lethal phenotype; the mutants were temperature sensitive for vegetative cell growth. This temperature-sensitive phenotype has been shown to be recessive and to cosegregate with the vacuolar protein-sorting defect in each case. Tetrad analysis showed that vpt3 mapped to the right arm of chromosome XV and that vpt15 mapped to the right arm of chromosome II. Intercrosses with other mutants that exhibited defects in vacuolar protein sorting or function (vpl, sec, pep, and end mutants) revealed several overlaps among these different sets of genes. Together, these data indicate that more than 50 gene products are involved, directly or indirectly, in the process of vacuolar protein sorting.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Robinson JS, Klionsky DJ, Banta LM, Emr SD
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference