Reference: Conlon P, et al. (2016) Single-cell dynamics and variability of MAPK activity in a yeast differentiation pathway. Proc Natl Acad Sci U S A 113(40):E5896-E5905

Reference Help

Abstract


In response to pheromones, yeast cells activate a MAPK pathway to direct processes important for mating, including gene induction, cell-cycle arrest, and polarized cell growth. Although a variety of assays have been able to elucidate signaling activities at multiple steps in the pathway, measurements of MAPK activity during the pheromone response have remained elusive, and our understanding of single-cell signaling behavior is incomplete. Using a yeast-optimized FRET-based mammalian Erk-activity reporter to monitor Fus3 and Kss1 activity in live yeast cells, we demonstrate that overall mating MAPK activity exhibits distinct temporal dynamics, rapid reversibility, and a graded dose dependence around the KD of the receptor, where phenotypic transitions occur. The complex dose response was found to be largely a consequence of two feedbacks involving cyclin-mediated scaffold phosphorylation and Fus3 autoregulation. Distinct cell cycle-dependent response patterns comprised a large portion of the cell-to-cell variability at each dose, constituting the major source of extrinsic noise in coupling activity to downstream gene-expression responses. Additionally, we found diverse spatial MAPK activity patterns to emerge over time in cells undergoing default, gradient, and true mating responses. Furthermore, ramping up and rapid loss of activity were closely associated with zygote formation in mating-cell pairs, supporting a role for elevated MAPK activity in successful cell fusion and morphogenic reorganization. Altogether, these findings present a detailed view of spatiotemporal MAPK activity during the pheromone response, elucidating its role in mediating complex long-term developmental fates in a unicellular differentiation system.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Conlon P, Gelin-Licht R, Ganesan A, Zhang J, Levchenko A
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference