Reference: Jazwinski SM, et al. (1989) Replication control and cellular life span. Exp Gerontol 24(5-6):423-36

Reference Help

Abstract


Cell proliferation involves both control of progress through the current cell cycle and coordination of successive cell cycles. We have focused our attention on the events that trigger traversal of the G1/S boundary of the cell cycle. A protein kinase activity was found in preparations of the DNA-replicative complex from the budding yeast Saccharomyces cerevisiae. The activity phosphorylated only a few of the proteins present in the replicative fraction, and it displayed a marked preference for a 48-kDa polypeptide. Most importantly, the protein kinase activity was heat-sensitive in replicative fractions from cdc7 cells, a mutant that arrests at the G1/S boundary at restrictive temperature. The results suggest that phosphorylation of components of the replication machinery may play a role in control of initiation of DNA replication during the cell cycle. We have also begun an analysis of cellular aging in yeast, as a means of addressing the problem of coordination of successive cell cycles. Yeast cells have a finite life span defined by reproductive capacity. With age, the generation time of yeast cells lengthened. The cell cycle of the daughter cell was under the control of the mother. This control was transient, and the daughter cell began dividing at the rate characteristic of its own age within three divisions of its birth. This suggests that the senescent phenotype, as manifested by lengthened generation time, is a dominant feature in yeast cells, and that it is determined by a diffusible cytoplasmic molecule(s) that undergoes turnover in young cells. In a search for this putative senescence factor(s), we are cloning genes that differentially expressed during the yeast life span. Several such genes have been isolated and partially characterized. Our goals are to determine whether the expression of one or more of these genes is casually associated with cell longevity. We propose the Cell Spiral model to describe the relationship between the cell cycle and cellular aging.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Jazwinski SM, Egilmez NK, Chen JB
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference