Reference: Chernoff YO and Kiktev DA (2016) Dual role of ribosome-associated chaperones in prion formation and propagation. Curr Genet 62(4):677-685

Reference Help

Abstract


Chaperones of the diverse ubiquitous Hsp70 family are involved in the regulation of ordered self-perpetuating protein aggregates (amyloids and prions), implicated in both devastating diseases and protein-based inheritance. Yeast ribosome-associated chaperone complex (RAC), composed of the Hsp40 protein Zuo1 and non-canonical Hsp70 protein Ssz1, mediates association of the Hsp70 chaperone Ssb with translating ribosomes. Ssb participates in co-translational protein folding, regulation of premature translation termination, and ribosome biogenesis. The loss of Ssb or disruption of RAC results in the increased formation of [PSI +], a prion form of the translation termination factor Sup35 (eRF3). This implicates co-translational protein misfolding in de novo prion formation. However, RAC disruption also destabilizes pre-existing [PSI +] prions, as Ssb, released from ribosomes to the cytosol in the absence of RAC, antagonizes the function of the major cytosolic chaperone, Ssa, in prion propagation. The mechanism of the Ssa/Ssb antagonism is currently under investigation and may include a competition for substrates and/or co-chaperones. Notably, yeast cells with wild-type RAC also release Ssb to the cytosol in certain unfavorable growth conditions, and Ssb contributes to increased prion loss in these conditions. This indicates that the circulation of Ssb between the ribosome and cytosol may serve as a physiological regulator of the formation and propagation of self-perpetuating protein aggregates. Indeed, RAC and Ssb modulate toxicity of some aggregating proteins in yeast. Mammalian cells lack the Ssb ortholog but contain a RAC counterpart, apparently recruiting other Hsp70 protein(s). Thus, amyloid modulation by ribosome-associated chaperones could be applicable beyond yeast.

Reference Type
Journal Article | Review
Authors
Chernoff YO, Kiktev DA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference